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Abstract  

A possible picture of the axiomatic basis of quantum mechanics is drawn and the set of 
propositions of the quantum logic approach to quantum mechanics is shown to be a 
complete, orthocomplemented and weakly modular lattice. A condition that the set of 
propositions be atomic is found, in which the notion of 'characteristic state' is involved. 
This scheme is compared with the usual Hilbert one, and in a Hilbert picture in which 
discrete superselection rules can be present also, the characteristic states are shown to be 
the pure states. 

1. Introduction 

In the quantum logic approach to the foundations of  quantum mechanics, 
the set of  proposit ions--or ,  as they are also called, experimental questions 
or events--is assumed to have a definite mathematical structure (Jauch, 
1968; Varadarajan, 1968). For instance, in Piron's formulation the set of  
propositions is assumed to be a 'generalised proposition system' (Piron, 
1964). A motivation for such an axiomatic structure is that the usual 
Hilbert model of  quantum mechanics can be in one sense obtained from it 
(Piton, 1964; Amemiya & Araki, 1967; Gudder & Piron, 1971). Moreover, 
the quantum logic axioms have been related by Plymen (1968a, b) with the 
C*-algebra approach to quantum mechanics (Segal, 1947; H a a g &  Kastler, 
1964; Kadison, 1965). Finally, we remark that the atomicity is a request 
for the set of  propositions which is not embodied in the axioms that define 
a generalised proposition system. The atomicity is anyway usually assumed 
in order to obtain quantum mechanics in Hilbert space. 

The aforementioned quantum logic axiomatic structure has been sup- 
ported by Jauch and Piron in a picture in which only the propositions are 

"~ Both authors acknowledge a C.N.R. (Comitato Nazionale per le Scienze Mate- 
matiche) scholarship. 

$ Also Scuola di Perfezionamento in Fisica, Universith di Milano. 

Copyright �9 1973 Plenum Publishing Company Limited. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo- 
copying, micrufilming, recording ur otherwise, without written permission of Plenum Publishing Company 
Limited. 

51 



52 FRANCO GALLONE AND ANTONIO ZECCA 

considered to be the basic constituents, while the states are introduced just 
as particular sets of propositions. This notion of  state applies to individual 
systems, while the usual quantum mechanical notion of state is a statistical 
concept. The price to be paid for such a picture is the introduction of a 
notion of ' t rue ' ,  which is rather an intuitive than a definite concept, since in 
this scheme no solution is given to the question 'how to produce systems for 
which a given yes-no experiment is known to be 'true' or how to obtain 
this knowledge' (Jauch & Piron, 1969). 

In this paper we present a reformulation of these ideas according to a 
scheme in which propositions and states are equally primitive entities. The 
dual natures of  the concepts of state and proposition are in fact apparent 
from an operational viewpoint, since a state can be identified in one sense 
by the set of values taken in it by the set of  all the propositions and a 
proposition can be defined in terms of the set of all the states (Gunson, 1967). 
In our framework the notion of  state is, anyway, more general than the 
usual one, since a-additivity is not assumed. This makes sense, as we are not 
concerned with observables, and hence with the problem of  obtaining 
probability measures on the real line from states and observables. 

According to this picture we shall introduce a triple which will be called 
proposition-state structure and which can be interpreted in a plausible 
physical way. Assuming therein three physically sensible axioms, we can 
show in Section 2 that the set of  propositions is a generalised proposition 
system. After introducing the notion of'characteristic state', in Section 3 we 
find a condition for the proposition-state structure from which the atomicity 
of the set of  propositions derives. The condition for the atomicity can be 
interpreted as the existence of  'sufficiently many' characteristic states. 
Finally, in Section 4 we show that in the usual Hilbert model the character- 
istic states are right the pure states; this is true also when discrete super- 
selection rules are present. Hence in this model we get a one-to-one cor- 
respondence from the set of  states onto the set of  atoms, while this cor- 
respondence has not to be a bijection as a general rule, even if in the set of  
propositions the atomicity holds. 

2. The Proposition-State Structure 

We assume that, if we are given a physical system, then we have a triple 
(L, S,P) which admits the following phenomenological interpretation. The 
term L denotes a set, the elements of which are the observation procedures 
which admit only two possible results, say 'yes' or 'no', namely instructions 
for an apparatus which interacts with a sample of  the physical system and 
indicates either 'yes' or 'no'  in correspondence with the 'occurrence' or 
'non-occurrence' of  a particular phenomenon pertaining to the physical 
system. The term S also denotes a set, the elements of which are called 
states. A state may be identified with a preparation procedure, namely 
instructions for an apparatus which produces samples of the physical 
system. The term P stands for a function P: L x S --~ [0,1 ]. The interpreta- 
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tion of  P(e ,s )  for e e L and s e S can be stated in the following way. Prepare 
an ensemble of samples of  the physical system according to the procedure s. 
Determine whether 'yes' or 'no'  occurs, observing by e each sample of 
the ensemble. Taking the number of  the samples of  the ensemble suf- 
ficiently large, the frequency of  'yes' can be made as close to P(e,s) as one 
wants. 

If  e e L, then the subsets Sl(e) and So(s) are defined to be Sl(e)--- 
{s e S;P(e,s) = 1} and So(s) = {s e S;P(e,s) = 0}. Let us now define on L 
the relation R as follows: if e, fle L, eRfl iff Sl(e) = S~(fl). It is then easy to 
show that R is an equivalence relation and we can define the set of  equivalence 
classes ~ --- L/R; [e] is the equivalence class containing the element e e L. 
We can define on s the relation < as follows: if [e], [fl] e La, [e] < ~ ]  iff 
sale) ___ sd~). 

Proposition 2.1. The set s with the relation < is a complete lattice, that is 
is a partial ordering on s and for any family {[ek]}(k e K) of elements of  

s with index set K, both the least upper bound and the greatest lower bound 
exist. 

Proof. The relation ~< is evidently reflexive and transitive, since the set- 
theoretical inclusion ~ is a reflexive and transitive relation. The definition 
of  R and the antisymmetry of  ~ imply that < is antisymmetric. Hence the 
relation ~< is a partial ordering on ~e. 

I f  {[ek]}(k e K) is any family of elements of  s with index set K, we can 
construct an element of  L defining an observation procedure in this way: 
choose at random one of  the observation procedures of  the family 
{ek}(k e K), and then use its apparatus to get the outcome 'yes' or 'no'. 
The element of L which has now been defined will be denoted by 1-I ek. It is 

k 
now easy to show that the element [I-I e~] of ~ depends only on the family 

k 
{[ek]} (k e K) of elements of  2 '  and not on the family {ek} (k e K) of elements 
of  L which has been used to define ]-I ek. From the definition of  I-I ek 
we have in fact k k 

sl(FI e~)= N sde~). 
k k 

Hence if{ek'}(k e K) is a family of  elements ofs ~ such that ekRek', Vk e K, 
it follows that 

S d F I  e~)= N sde~)= N s~(e~') = s~(FI e~'), 
k k k k 

which is equivalent to 1-I ekR 1--~ ek'. If  [fl] is an element of  ~ ,  then 
k k 

[fl] < [ak], Vk e K iff SI(~) __c Sl(ek), Vk e K iff 

s ~ )  =_ N sl(e~) = s~(1-I e~) 
k k 

iff [fl] < [1--I ek]. Hence the greatest lower bound exists for the family 
k 
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{[ak]}(k ~ K) and it is [y[  ~k]- We shall denote it by A [ak], since we reserve 
k k 

the symbol fq for the set-theoretical meet. 
It is now easy to show that for the family {[c~k]} (k ~ K) also the least upper 

bound exists and that it is the greatest lower bound of  the family {[fl] ~ s162162 
[ak] ~< [fl], Vk ~ K}. It will be denoted by V [C~k], since we reserve the symbol 

k 
U for the set-theoretical join. The least and the greatest elements of s will 
be denoted by ~b and I respectively. They contain the trivial observation 
procedures q~ and I defined by saying 'no' or 'yes' respectively, simply 
because the physical system exists. The set $1(/') is in fact S and the set 
S~(q~) is the empty set of  states. 

The theorem which we have now proved is the counterpart in (L, S,P) of  
a theorem which can be found in the paper of Jauch & Piron (1969). Se will 
be called the logic of the physical system and the elements of ~o-q ~ propositions, 
following a terminology introduced by Birkhoff & yon Neumann (1936). 
According to the phenomenological interpretation of  the function P, two 
observation procedures a, fl ~ L are distinguishable in our framework only 
if a preparation procedure s s S exists such that P(a, s) ~ P(fl, s). We want, 
however, two equivalent elements of  L to be undistinguishable, because we 
want to consider as basic elements of our picture the propositions, namely 
the elements of 5e. This is the motivation to state our first axiom. 

Axiom 1. If  �9 and fl are elements of L, then from aRfl it follows that 
P(a,s) = P(fl, s), gs  ~ S. 

From Axiom 1 it follows that P can be considered to be a function on 
~q' • S rather than on L • S, assuming P([a],s) = P(a,s) if  a E L and s e S. 
Accordingly, Sl(a) and So(a) can be re-defined in an obvious way if a e ~o. 
Hence trivially we get 

SI(A ak) = 0 S~(ak) 
k k 

for any family {ak}(k ~ K) of elements of  5r with index set K, Sl(a) = S iff 
a = I, S~(a) is the empty set of states iff a = r The triple (LP, S,P) will be 
called proposition-state structure, following a terminology introduced by 
Pool (1968). 

I fa  is an observation procedure, then we can define another element 8 of L, 
simply interchanging the labels of the outcomes 'yes' and 'no' in the ap- 
paratus which defines a. From the very definitions and from the phenomeno- 
logical interpretation of P it follows that, if a ~ L, then P (8 , s )=  1 - P ( a ,  s), 
Vs ~ S. Hence we get Sl(a) = So(~) and Sl(g) = So(a), Va ~ L, Vs e S. As a 
consequence of Axiom 1, we can now define the mapping 

c :  Le - +  ~ ,  c[a]  = [~]. 

Indeed, if two elements a and fl of  L are such that aRfl, then So(00 = So(fl) 
holds, from which it follows that $I(8) = S~(fl). Hence we get 8Rfl. 



QUANTUM LOGIC AXIOMS 55 

I f  a ~ A a, f rom Sl(a A ca) = S~(a) fl So(a) it follows that S~(a A ca) is 
the empty set of  states. Hence we get a A ca = ~b and ca could be a comple- 
ment of  a. The proposition ca would in fact result in a complement of  a if 
S~(a V ca) could be shown to be the full set of  states in a way similar to that 
followed previously for S~(a A ca). But this is impossible, because the 
relations Sl(a V b ) =  Sl (a)U Si(b) for any a and b in A ~ and S i ( c a ) =  
S - S~(a) for any a ~ A ~ hold only if we consider for the physical system a 
classical system and for S the set of  pure states, as will be pointed out later. 
Otherwise, both equalities cannot be asserted to be true. Hence we have to 
postulate that the pair of  propositions a and ca behave in a 'classical' way 
for any a E A~ namely, we have to state the following axiom. 

Axiom 2. I f  a is any proposition of ~ ,  then S~(a V ca) = S. 

From Axiom 2 it follows that a V ca = I for any a E A ~ Hence ca is a 
complement of  a. 

Our picture will be complete if we assume our last axiom. 

Axiom 3. I f  a and b are two propositions of  5r such that S~(a) ~_ S~(b) 
then the sublattice of  A ~ generated by the family {a, ca, b, cb} is distributive. 

We can now in fact show the main result of  this section. 

Proposition 2.2. The logic A ~ is a generalised proposition system in the 
sense of  Piron (1964). 

Proo f  In Proposition 2.1 we have shown that A ~ with the relation < is a 
complete lattice, hence the Axioms O and T of Piton are satisfied by s I f  
a and b are two elements of  Ae such that a < b, then-- taking into account 
Axioms 2 and 3 and that from a < b it follows that cb A a <~ cb A b = ~ - -  
we get cb = cb A (a V ca) = (cb A a) V (cb A ca) = cb A ca, whence cb <~ ca 
follows. Moreover, for any a ~ 5Y, c (ca)= a holds because of  the very 
definition of c, along with a A ca = q~, which has already been proved. Hence 
c is an orthocomplementation and Piron's Axiom C holds in L. Then 
Axiom 3 results in Piron's Axiom P exactly, and this completes the proof  of  
the theorem. 

The request that Axioms 1, 2 and 3 hold in the proposition-state structure 
(A a, S , P )  amounts therefore to require that the Axioms O, T, C, P hold 
for the set Ar of  all the propositions of  the physical system. We notice that, 
after Proposition 2.2, Axiom 3 results in nothing else than the axiom of 
weak-modularity, which has been widely motivated, e.g. by Piron (1964) 
and by Jauch (1968). 

I f  s ~ S then, as a consequence of Axiom 1, we can define the function 
g:Ao _+ [0,1], g(a )=P(a , s ) .  The set ~q of  all the functions ~ has the 
properties: 

(a) ~(I) = 1 and ~(~b) = 0, V~ ~ S; 
(b) ~(a) = 1 i f fg(ca) = O, Vg ~ S, Va  ~ 5r 
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(c) if a,b ~ ~. and ~ e S then g(a) = 1 ~ g(b) = 1 iff a < b; 
(d) if a e L~ a then a ~ q~ iff ~g E ~q, ~(a) = 1 ; 

(e) i fa,b ~ Lz" then a r  b iff3g ~ ~q, ~(a) r g(b). 

All these assertions follow directly from the definition of  ~. The set S of  
states is called convex if the following property holds. Let st and s2 be two 
elements of  S and k a rational number such that 0 < k < 1. Then there is an 
element s of  S such that g = kgl + (1 - k)g2. The element s of  S which 
defines g will be denoted by the symbol ks1 + (1 - k)s2, and it can be easily 
interpreted as follows. Let N b e  any integer such that kNis  an integer. I f  you 
prepare N samples of  the physical system by the procedure kst + (1 - k)s2, 
then you have to prepare k N  of  them by the procedure st and the others by 
the procedure s2. For convenience, in the sequel S will be assumed to be 
convex. This property will be used only to show Proposition 3.3 in the next 
section. 

Finally, it should be stressed that we have had to introduce Axiom 2 
because in a general proposition-state structure the usual logical significance 
of  the lattice operations does not hold. In fact, while the proposition a A b 
is true iff both a and b are true since St(a A b) = St(a) N St(b) holds by 
definition, we cannot assert that the proposition a V b is true iff a or b, or 
both, are true. Indeed, St(a) U St(b) ~ St(a V b) holds because a < a V b 
and b < a V b, but St(a) U St(b) = St(a V b) does not hold as a rule, as it is 
shown by examples which can be easily constructed in quantum mechanics 
as well as in classical mechanics, if for the classical case we also consider in S 
states which are not pure. The equality holds also for the join, and the usual 
logical interpretation of both the meet and the join is then possible, if the 
physical system is a classical one and if in S we consider pure states only. In 
this case the lattice is in fact the power set of  the phase space ~2 and a state 
is defined fixing a point of  O. I f  a s ~ ,  the state s is then in St(a) iff s s a. 
Hence St(a V b) = St(a) U St(b) trivially holds, since both sets are in fact 
the subset a U b of  f2. 

An analogous discussion could be performed about the relation St(ca) = 
S - St(a), which does not hold but for the case of  a classical system with 
only pure states. 

3. The Atomicity Condition 

The atomicity condition is generally postulated for the logic Sr in order 
to get the usual Hilbert space model for quantum mechanics. Then we want 
to find a possible relationship between the atomicity of  Se and some 
features of  the proposition-state structure ( ~ , S , P ) .  First of  all, we shall 
find a strict correlation between atoms and a class of  subsets of  ~ .  

Definition 3.1. A subset d r of  L,e is called an ideal if the following relations 
hold: 
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(a) ~ r J;  
(b) a V b ~ J ,  V a ~ J ,  Vb~ Sf ; 
(c) if  {ak} (k ~ K) is a family of  elements of  ~ with index set K, then 

k 

I f  in (c) we assume the index set to be finite, then we get what is called by 
Birkhoff (1967) a dual ideal. Notice that condition (b) in Definition 3.1 is 
equivalent to a ~ J ,  b ~ s a < b => b ~ J .  The notion of  ideal being very 
important in what follows, we characterise it by means of  the following 
theorem. 

Proposition 3.1. I f  or _ s then J is an ideal in ~ iff 3a e ~e, a r r such 
that or = {x ~ s a ~< x}. Then a = Ax - A J .  

x~,,r 

Proof. It  is trivial. 

An ideal is called maximal if it is a maximal element in the set of  all the 
ideals of  s ordered with respect to set inclusion. We notice that the existence 
of maximal ideals cannot be proved by a Zorn-like argument because of 
condition (c) in Definition 3.1. We shall now state the correlation between 
atoms and maximal ideals. 

Propositon 3.2. I f  J is an ideal in ~ and a = A ~r then the following 
conditions are equivalent: 

(a) J is maximal, namely for an ideal J '  in s j _ or =~ J = or 
(b) a is an atom, namely a ~ r and for an element b e s different from a, 

b<a::> b=~ .  

Proof. (a) => (b): a r r follows from (a) and (c) of  Definition 3.1. I f  
b r a could exist in ~e such that b < a and b ~ r then for J '  - {x e ~ ;  
b < x} it would be seen to hold or _ J '  along with J r J ' :  apply Proposition 
3.1 and notice that b e J '  and b $ J .  Hence J fails to be maximal. 

(b) ~ (a): i f~"  is an ideal such that J ~ f ,  then we get r ~ A J '  < A J ,  
f rom which A J '  = A J follows because A J is an atom. From Proposition 
3.1 we get J = J ' .  

Let us now introduce ideals in s using the proposition-state structure. 
I f  s ~ S, define ~'s = {x ~ ~e;s E St(x)}. Whatever the state s is, ~r cannot 
be the empty set of  the set &o, since 1~ J~, Vs ~ S. Taking into account that 
Sl(tk) is the empty set of  states, that a < b is equivalent to St(a) ~ St(b), 
and that 

SI(A ak) = A St(ak), 
k k 

we can show that ~'~ is an ideal. 
I f  a state is thoroughly characterised by the propositions which are true 

in it then it singles out an atom, as we shall presently see. First we need a 
definition. 
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Definition 3.2. We say that a state s is characteristic i f s '  ~ S, or = J~  =~ 
S'=S. 

We denote the set of  characteristic states by So. The next theorem shows 
how maximal ideals are related to characteristic states. 

Proposition 3.3. I f s  ~ So, then or is a maximal ideal. 

Proof. Let us suppose that oCs is not a maximal ideal. Then s will be 
proved not to be characteristic. Indeed if J~  is not maximal then, because 
of Proposition 3.2, A J ,  is not an atom and this in turn implies that b ~ 
exists such that 4~ < b < A J~  along with b r ~b and b ~ A i s -  Hence a 
state s '  exists such that s '~  S~(b), since b r ~, and s'~a s, since from 
b ~ A J ,  it follows that b r i s ,  and this in turn implies that s ~ Sl(b). 
Because of  convexity of  S, a state g exists such that g = ks' + (1 - k)s, where 
k is a rational such that 0 < k < 1. We can show that ~ r s observing that 
P(b,g)=P(b,s)  holds iff P(b,s ' )=P(b,s )  holds, but P(b,s ' )= 1 while 
P(b, s) ~a 1. It  is now easy to prove that, for any proposition x ~ ~ ,  P(x, ~) = 
1 i f f P ( x , s ' ) = P ( x , s ) =  1. Hence we get J~  = J ~ ,  f3 J~. From b < A 0r 
S~(b) ~_ S~(A ocs) follows. Thus s' belongs to SI(A ~r and consequently 0r 
is a subset of  J~,. In this way we have found that for g the two relations g -~ s 
and J~  = ~ r  are fulfilled, namely that s is not characteristic. This proves the 
theorem. 

We can now easily show the main theorem of this section. 

Proposition 3.4. Let the logic s be such that for any proposition a ~ La, 
a ~ ~b, at least one of  the following conditions holds: 

(a) a is an atom; 
(b) S~(a) N 5;, is not the empty set of  states. 

Then s is an atomic lattice, namely for any a ~ s a # q~, this condition 
holds: 

(A) an atom p exists such that p ~< a. 

Proof. Let a e s a ~ ~b, be such that condition (a) holds. Then condition 
(A) is true withp = a. Take now a e s a r q~, such that condition (b) holds. 
I f  s ~ Sl(a) Cl Sc then a ~ J~  and J ,  is a maximal ideal, as a consequence 
of Proposition 3.3. Hence, taking p = A i s ,  we get condition (A), because 
p ~< a and p is an atom, as a consequence of  Proposition 3.2. 

This theorem provides a condition for the proposition-state structure 
which assures the atomicity of  ~go. The meaning of this condition is to 
require the existence of 'sufficiently many '  characteristic states. 

Proposition 3.3 sets up a correspondence from the set of characteristic 
states into the set of  maximal ideals: if s is a characteristic state, a maximal 
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ideal or exists such that s ~ St(A dr). It  is in fact i s .  It  should be noted that, 
in the general picture which we have drawn, this correspondence need not 
be a bijection even if the lattice is atomic. Let J be in fact a maximal ideal 
and p = A d r. From Proposition 3.2 it follows that p is an atom. Then, 
without any contradiction with the condition of  Proposition 3.4, for the 
a t o m p  the set of  states St(p)  f~ Sc could happen to be the empty set. Hence 
no characteristic state s can exist such that s ~ St(A J )  and the correspond- 
ence from the set of  characteristic states into the set of  maximal ideals is 
not onto. We notice that, if St(p) tq Sc is empty, there are infinitely many 
states s (none of  them can be characteristic !) for which s ~ S t (p)  (whence, 
by maximality of  J ,  we get also or = J ) .  Indeed, sincep is different from ~, 
a state g must exist in St(p).  A t  least another state s '  must then exist in 
St(p) [if St(p)  would in fact contain only the state g, then g could be easily 
shown to be characteristic]. Hence for any state s = kg + (1 - k ) s ' ,  with k 
rational and 0 < k < 1, we get s ~ S~(p). 

4. The Hilbert Model  

We can now ask what happens to the picture discussed in Section 3 when 
the usual Hilbert model is assumed. First we give here a brief account of  this 
model, while a detailed description can be found elsewhere (Cirelli & 
Gallone, 1972). 

When in the Hilbert model the superselection rules are assumed to be 
discrete, then the logic 2" is taken to be a direct union of standard logics, 
namely 

2 "  = V e 2"k 

where K is a finite or countable index set and the standard logic 2"k is the 
orthocomplemented lattice of  all the projections of  a complex separable 
Hilbert space ~ (Varadarajan, 1968). For each k e K, a 'projection' rck is 
defined from 2" onto 2"k as the function which maps any element of  2" into 
its component  in 2"k. The projection ~rk is a homomorphism, namely it 
preserves the meet, the join and the orthocomplementation (Gallone & 
Mani/~, 1971). The set of  states (we call here state and denote by s the function 

which is defined by a state s as in Section 2) is taken in this scheme to be 
the set of  all the positive, o'-additive functions s on 2" such that S ( I )  = 1, 
where I is the unit element of  2". We recall that o--additivity means 

s (v a.) = ~ s(a.) 
n 11 

if a ,  < cam for n ~ m, where {a,} is a countable family of  elements of  2". We 
can now easily prove that a function s on 2 '  is a state if and only if there is a 
sequence {x,} of  vector fields x, :  K ~ k -+ x , (k)  ~ K such that the vectors of  
the family {x,(k)} are orthogonal for each k ~ K, the condition 

~ llx,(k)ll 2 = 1 (4.1) 
k n 
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holds and the equality 

s (a) = ~, ~ (x,(k) ,  ~zk (a)x,(k)),  Va ~ ~ (4,2) 
k n 

is satisfied. 
In fact, if for a function s the relation (4.2) holds, then it is trivially positive 

and a-additive, and from the condition (4.1) we get s ( I )  = 1. Hence it is a 
state. Conversely, i fs  is a state, then for each k ~ Kwe can define on 5r the 
function 

0 if s(nk(I)) = 0, 
Sk:ZPk -+ [0, 1],Sk(Ct) = S(e).(S(nk(I)))_ 1 if  s(nk(I)) V L O. 

When Sk is not the null function, then it is easily shown to be a positive 
a-additive function on the standard logic ~ k  such that Sk(nk(I)) = 1, where 
nk(I) is the unit element of 5r (namely it is the unit operator on ~k) .  
Hence, by a theorem of Gleason (1957) for each k e K a sequence of  ortho- 
gonal vectors {y,(k)} in Ygk exists such that 

sk(~t) = E (y , (k  ), ey,(k)) ,  Ve  ~ s 
n 

[if s~ is the null function, the sequence is simply constructed taking y,(k)  to 
be the zero vector for any index n]. Define then the sequence of vector fields 
{x,} such that x.(k)  = y , (k) .  (s(~zk(I))) 1/2. The condition (4.1) holds for {x,}, 
since 

~. Z llx.(k)[I 2 = ~ Z (y , (k) ,  rrk(I)y,(k)),  s(~zk(I)) 
k n k n 

= E s (~ ( I ) )  = s ( v  ~ ( I ) )  = 1 
k k 

Moreover the state s is connected with the sequence {x,} through the relation 
(4.2). Indeed for any element a ~ ~ we get 

s(a) = s(v  ~,(a)) 

= Y. s(~,(a)) = ~ s,(~,(a)) .s(~,(I))  
k k 

= ~ ~ (x.(k),~(a)x.(k)) 
k n 

We point out that the scheme of the Hilbert model is less general than 
the framework of  the previous sections, not only because s is now made up 
by sequences of  projections but also because the states are now taken to be 
a-additive. This is in fact a very strong property which has not been assumed 
for the states in Sections 2 and 3. 

We shall now show that in the Hilbert model a state s is characteristic iff 
it is represented by a ray. Hence in this model the characteristic states are in 
fact the pure states because of Theorem 7.23 of Varadarajan's book (1968). 
Before turning to the proof  of this property of  characteristic states in the 
Hilbert model, we need to find in it a condition under which two states 
s and s '  define the same ideal. Let (x,} and {y,,} be two sequences of vector 
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fields related to the states s and s '  respectively, as in (4.2). Then  we have 

J s  = i s ,  iff tr{xn(k)} = o'{ym(k)}, Vk ~ K (4.3) 
n / n  

where a{x.(k)} and a{y,.(k)} are the closed linear span in ~ k  of  the families 
n / / I  

of  vectors {x.(k)} and {y,.(k)} respectively. Being a an element ofs ~ s(a)  = 1 
is in fact equivalent  to zck(a)x.(k) = x . ( k ) ,  Vn ,  V k  ~ K,  since the componen t  
nk(a) o f  a in s k is a projection. An analogous relation holds for  s ' .  Hence 
we have tha t  J s  = i s ,  is equivalent to 

rck(a) x,,(k) = x,,(k), Vn ,  V k  ~ K ~ rck(a) ym(k) = 

y,~(k), V m ,  V k  ~ K (4.4) 

where a is an element o f  s Moreover ,  it is easy to show that  the equalities 
a{x,(k)} = a{y,,(k)}, Vk e K, imply that  the relation (4.4) holds. Conversely, 
71 //1 

if  the relation (4.4) holds true then we get the equalities o-{x,(k)} = o-{y,,(k)}, 
n t a  

Vk E K, taking a in (4.4) first such that  the range o f  rck(a) is a{x,(k)}, 
n 

Vk ~ K, and then such tha t  the range of  rck(a) is o'{y,n(k)}, Vk E K. Hence 
m 

the relation (4.4) is equivalent  to a{x,(k)} = o-{y,,(k)}, Vk e K, and  this 
t l  /11 

completes  the p r o o f  o f  (4.3). 
We can now prove that  characteristic and pure  states coincide. 

Proposi t ion 4.1. I f  s is a state in the Hi lber t  model ,  then the following 
condit ions are equivalent:  

(a) There are an index k '  s K and a vector  x s d4~ with Ilxjl = 1, such 
that  s(a)  = (x,  zck, (a)x) ,  V a  ~ s ; 

(b) s is a characteristic state. 

Proof.  (a) => (b): take a state s '  such that  J~ ,  = J~.  Then,  because o f  
(4.3), s '  is defined by  a sequence o f  vector  fields {y,} such that  a{y,(k)} = {0} 

H 

for  k r k '  and a{y,(k')} = o-{x}. Hence in {y,} there is in fact only one vector  
n 

field y different f rom the null one and it has the components  y ( k ) =  0 if 
k vak '  and  y (k ' )  = ex ,  where c~ is a complex number  different f rom zero. 
F r o m  condit ion (4.1) it follows that  [cr I = 1. Therefore,  s and s '  coincide, 
whence s is characteristic. (b) ~ (a): if  {x,} is a sequence of  vector  fields 
which is related to the state s as in (4.2) and {y,,} a sequence related to a 
state s ' ,  f rom (4.3) it follows that  the relation 

o- {x,(k)} = ~ {ym(k)}, Vk ~ K ~ s = s '  (4.5) 
t l  ? f /  

must  hold. Let  us now suppose that  two pairs o f  indexes (nl, kl)  and (n2,k2) 
exist such that  x , l ( k  0 # 0 and x,~(k2) v a O. I f  ~ and fl are two non-null  
complex numbers  such that  [~] ~ 1 and 

l~l z Ilx,,(kOII z + 1~1 z [Ix, 2 (k2)[I 2 = IIx,,(ka)ll 2 + Ilx,2(k2)l[ 2 
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(there are infinitely many pairs of  numbers for which this property holds 
true), construct a sequence {y.} in this way: 

y.(k) = x.(k) if (n, k) r (nl, k0,  (n2, k2) 

y.,(kl) = ax.l(kl) 
y.2(k2) = ~x.2(k2) 

Since for {y.} the relation (4.1) holds, {y.} defines a state s '  which is different 
from s, since s(a)= IIx.~(k0l? while s '(a)= 1~I2[Ix.~(kOll z for a ~ ~o such 
that rck(a) is the null projection in ~fk if k r kt and ZCk~(a) is the one- 
dimensional projection with range a{x.~(k~)}. As we have constructed {y.} 
in such a way that a{x.(k)} = a{y.(k)}, Vk  ~ K, the condition (4.5) fails 

n n 

to be true and, if s has to be characteristic, only one pair of  indexes (n, k) 
must exist for which x.(k) ~ O. As a consequence, condition (b) holds and the 
proof  of  the theorem is complete. 

It is now easy to show that, as one could easily expect, in the Hilbert 
model everything works well, in the sense that the condition (b) of  Pro- 
position 3.4 is fulfilled for any element b ~ 5r different from ~b. For such an 
element take in fact an index k' ~ K for which the component 7ck,(b) of b is 
different from the zero projection, a vector x s ~k ,  in the range of  nk,(b) 
such that llxll = 1, and construct the characteristic state s defined by s(a) = 
(x, rck,(a)x), Va ~ ~ .  It is then trivial to see that s is a state of Sl(b). 

We have now shown that in the Hilbert model the condition of the exist- 
ence of'sufficiently many' characteristic states trivially holds (in the Hilbert 
model ~ is in fact an atomic lattice). However, it has been shown that, if 
some 'geometric properties' of  a proposition system are considered, then 
'the physical reality could be too complex in order to fit in any Hilbert space' 
(Mielnik, 1968). This provides a possible motivation to look for a condition 
for the atomicity of 5r in a picture more general than the Hilbert one. 

Finally, it should be noticed that in the Hilbert model we have a bijection 
between characteristic states and maximal ideals. Ifp is in fact an atom, then 
every component except one is zero and the non-null component is a one- 
dimensional projection. Hence S~(p) contains exactly the pure state which 
is represented by the ray corresponding to the range of  the non-null com- 
ponent ofp. The mapping from the set of characteristic states into the set of 
maximal ideals which sends s into J~ is then easily proved to be a bijection, 
as a consequence of Proposition 3.2 and Proposition 3.3. 
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